Mass Moment of Inertia Calculator

Created by Kenneth Alambra
Last updated: Aug 31, 2022

This mass moment of inertia calculator will help you determine the mass moment of inertia of any common figures like spheres, rectangular prisms, cylindrical objects, and more.

Keep on reading to learn about:

  • What moment of inertia is;
  • How to calculate moment of inertia;
  • The mass moment of inertia equation;
  • The mass moment of inertia table; and
  • How to use this mass moment of inertia calculator.

What is moment of inertia?

Mass moment of inertia is the amount of torque or moment needed to make an object rotate or experience an angular acceleration about an axis.

An object's mass moment of inertia gives us an idea of how much rotational inertia the object can have with respect to an arbitrary rotational axis. The larger the moment of inertia of an object is, the harder it is to gain rotational kinetic energy or the harder it is to stop from turning.

To know what the moment of inertia of an object is, take the product of the torque needed to rotate that object and the applied torque's distance from the axis of rotation. However, there is a much better and correct way of doing it, and we'll discuss that in the next section of this text.

The mass moment of inertia equation and table

To calculate the mass moment of inertia, II, let us consider a point of material with mass, mm, which is at a distance from an arbitrary axis of rotation, which we denote as rr.

We can calculate its mass moment of inertia by taking the product of its mass by the square of its distance from its axis of rotation, as shown in the equation below:

I=m×r2I = m\times r^2

To determine an object's mass moment of inertia, we can consider all its points' mass moment of inertia, and sum them all up. We can express that in equation form shown below:

I=i=1n(mi×ri2)I = \sum_{i=1}^n (m_i\times r_i^2)

Where:

  • nn is the total number of material points in an object;
  • ii is the representation of each point in the object and has values from 11 to nn;
  • \sum is the summation symbol for sample ii;
  • mim_i is the mass of ithi^{\text{th}} material point; and
  • rir_i is the distance of ithi^{\text{th}} material point from the axis of rotation.

We can also divide our object into very tiny points with equal masses and use calculus to find an object's mass moment of inertia. We can do that by evaluating the integral over these set point masses, as expressed in the moment of inertia formula below:

I=(r2×dm)I = \int (r^2\times dm)

Moment of inertia table

We can then use the moment of inertia formula integration to derive other formulas for objects that come in specific shapes like cube, cylinder, sphere, and so on, as shown in the mass moment of inertia table below:

No.

Figure and moments of inertia

#1 - Ball. Solid ball of radius r and mass m with axis of rotation going through its center.

The picture of a ball
Ball moment of inertia formula I = 2/5mr²

#2 - Circular hoop. Thin circular hoop of radius r and mass m with three axes of rotation going through its center: parallel to the x, y or z axes.

The picture of a circular hoop
Circular hoop moment of inertia formula Iz = m*r²
Circular hoop moment of inertia formula Ix = Iy = 1/2mr²

#3 - Cuboid. Solid cuboid of length l, width w, height h and mass m with four axes of rotation going through its center: parallel to the length l, width w, height h or to the longest diagonal d.

The picture of a solid cuboid
Solid cuboid moment of inertia formula (around four different axes)

#4 - Cylinder. Solid cylinder of radius r, height h and mass m with three axes of rotation going through its center: parallel to x, y and z axes.

The picture of a solid cylinder
Solid cylinder moment of inertia formula Iz = 1/2mr²
Solid cylinder moment of inertia formula Ix = Iy = 1/12m(3*r² + h²)

#5 - Cylindrical tube. Cylindrical tube of inner radius r₁, outer radius r₂, height h and mass m with three axes of rotation going through its center: parallel to x, y and z axes.

The picture of a cylindrical tube
Cylindrical tube moment of inertia formulae

#6 - Cylindrical shell. Cylindrical shell of radius r and mass m with axis of rotation going through its center, parallel to the height.

The picture of a cylindrical shell
Cylindrical shell moment of inertia fomula I ≈ m*r²

#7 - Disk. Thin solid disk of radius r and mass m with three axes of rotation going through its center: parallel to the x, y or z axes.

The picture of a thin solid disk
Thin solid disk moment of inertia formula Iz = 1/2mr²
Thin solid disk moment of inertia formula Ix = Iy = 1/4mr²

#8 - Dodecahedron. Solid and hollow, regular dodecahedron (twelve flat faces) of side s and mass m with axis of rotation going through its center and one of vertices.

The picture of a regular dodecahedron
Solid dodecahedron moment of inertia formula
Hollow dodecahedron moment of inertia formula

where:

Golden ration formula - used to describe moments of inertia for solid and hollow dodecahedrons

#9 - Ellipsoid. Solid ellipsoid of semiaxes a, b, c and mass m with three axes of rotation going through its center: parallel to the a, b or c semiaxes.

The picture of a solid ellipsoid
Solid ellipsoid moment of inertia formula Ia = 1/5m(b² + c²)
Solid ellipsoid moment of inertia formula Ib = 1/5m(a² + c²)
Solid ellipsoid moment of inertia formula Ic = 1/5m(a² + b²)

#10 - Icosahedron. Solid and hollow, regular icosahedron (twenty flat faces) of side s and mass m with axis of rotation going through its center and one of vertices.

The picture of a regular icosahedron
Solid icosahedron moment of inertia formula
Hollow icosahedron moment of inertia formula

where:

Golden ration formula - used to describe moments of inertia for solid and hollow icosahedrons

#11 - Isosceles triangle. An isosceles triangle of mass m, vertex angle 2β and common-side length L with axis of rotation through tip, perpendicular to plane.

The picture of an isosceles triangle
Isosceles triangle moment of inertia formula

#12 - Octahedron. Solid and hollow, regular octahedron (eight flat faces) of side s and mass m with axis of rotation going through its center and one of vertices.

The picture of an octahedron
Solid octahedron moment of inertia formula I = 1/10ms²
Hollow octahedron moment of inertia formula I = 1/6ms²

#13 - Point mass. Point mass m at a distance r from the axis of rotation.

The picture of a point mass
Point mass moment of inertia formula I = m*r²

#14 - Rectangular plate. Thin rectangular plate of length l, width w and mass m with axis of rotation going through its center, perpendicular to the plane.

The picture of a thin rectangular plate
Thin rectangular plate moment of inertia formula I = 1/12m(w² + l²)

#15 - Regular polygon. Plane regular polygon with n vertices, radius of the circumscribed circle R and mass m with axis of rotation passing through its center, perpendicular to the plane. Radius R can be expressed with side s.

The picture of regular polygons (n=3,4,5,6,7,8,10,12)
Regular polygons moment of inertia formulae
Formula for R that is used to describe regular polygons moment of inertia

#16 - Right circular cone (hollow). Hollow right circular cone of radius r, height h and mass m with three axes of rotation passing trough its center: parallel to the x, y or z axes.

The picture of a hollow right circular cone
Hollow right circular cone moment of inertia formula Iz = 1/2mr²
Hollow right circular cone moment of inertia formula Ix = Iy = 1/4m(r² + h²)

#17 - Right circular cone (solid). Solid right circular cone of radius r, height h and mass m with three axes of rotation passing trough its center: parallel to the x, y or z axes.

The picture of a solid right circular cone
Solid right circular cone moment of inertia formula Iz = 3/10mr²
Solid right circular cone moment of inertia formula Ix = Iy = 3/20m(r² + 4h²)

#18 - Rod. Rod of length L and mass m with two axes of rotation: about its center and one end.

The picture of a rod with rod moment of inertia formulae: Icenter = 1/12mL² and Iend = 1/3mL²

#19 - Sphere. Hollow sphere of radius r and mass m with axis of rotation going through its center.

The picture of a hollow sphere
Hollow sphere moment of inertia formula I = 2/3mr²

#20 - Spherical shell. Spherical shell of inner radius r₁, outer radius r₂ and mass m with axis of rotation going through its center.

The picture of a spherical shell
Spherical shell moment of inertia formula

#21 - Tetrahedron. Solid and hollow, regular tetrahedron (four flat faces) of side s and mass m with axis of rotation going through its center and one of vertices.

The picture of a tetrahedron
Solid tetrahedron moment of inertia formula I = 1/20ms²
Hollow tetrahedron moment of inertia formula I = 1/12ms²

#22 - Torus. Torus with minor radius a, major radius b and mass m with axes of rotating going through its center: perpendicular to the major diameter and parallel to the major diameter.

The picture of a torus
Torus moment of inertia formulae

#23 - Two point masses. Two point masses m₁ and m₂, with reduced mass μ, separated by a distance r with axis of rotation going through the center of mass and perpendicular to the line joining the two particles.

The picture of two point masses
The point masses moment of inertia formula I = μ*r²

It's also worth noting that we use kgm2\text{kg}\cdot\text{m}^2, lbft2\text{lb}\cdot\text{ft}^2, or lbfts2\text{lb}\cdot\text{ft}\cdot\text{s}^2 as mass moment of inertia units. You can use that as a distinction against the second moment of area units, which are in the forms of m4\text{m}^4 or ft4\text{ft}^4. You can learn more about the second moment of area by checking out our separate moment of inertia calculator.

How to use this mass moment of inertia calculator

Here are the steps you can follow when using our mass moment of inertia calculator:

  1. Select the figure that matches the object's shape that you want to find the mass moment of inertia. You can choose from more than 20 figures in our tool.
  2. Enter the mass of your object.
  3. Input the distance measurement that our calculator requires you to enter. This distance depends on the figure you selected. Our mass moment of inertia calculator will use this measurement to determine the moment arm or the distance, rr, suitable for your object of choice.

And that's it! Our mass moment of inertia will already display the mass moment of inertia about an axis (or various axes), depending on the figure you choose. You can also change the moment of inertia units by clicking on the dropdown arrow beside the calculated value.

Kenneth Alambra
Select the figure
Figure
Point mass
Mass
oz
Distance
ft
Result
Moment of inertia
lb*ft²
People also viewed…

Angular frequency

Our angular frequency calculator can determine the angular frequency of rotating or oscillating bodies.

Schwarzschild radius

Discover the fundamental of black hole physics with our Schwarzschild radius calculator.

Torque

Use this torque calculator to determine the torque an object experiences due to applied force at an angle at the lever arm distance from the object's center of rotation.
main background